Enrollment No:

Exam Seat No: _____

____ **C.U.SHAH UNIVERSITY** Summer Examination-2018

Subject Name: Problem Solving-I

Subject Code: 580	CO2PRS1	Branch: M.Sc. (Mathematics)				
Semester: II	Date: 27/04/2018	Time: 10:30 To 01:30	Marks: 70			

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1 Answer the Following questions: (07) **a.** Find $\operatorname{Im}\left(\frac{1}{z}\right)$, where $z = (\sin x + i \cos x)^7$. (02) $\begin{bmatrix} -1 & 2 & 3 \end{bmatrix}$

b. Find the rank of
$$\begin{vmatrix} 2 & -4 & -6 \\ 3 & -6 & 9 \end{vmatrix}$$
. (02)

- c. Give an example of function have removable singularity. (01)
- **d.** Determine the function f(z) for which f(0) = 0 further f(z) is bounded and f'(z)(01)is continuous.

(01)

(14)

e. Write the orthonormal basis of M_{22} .

Q-2 Attempt all questions

(07)**a.** For the Strum-Lioville problem $X'' + \lambda X = 0, X(0) = X(\pi), X'(0) = X'(\pi)$ obtain the eigenfunctions and the corresponding eigenvalues.

b. Solve:
$$\frac{dy}{dx} + 2y \tan x = \sin x$$
; $y\left(\frac{\pi}{3}\right) = 0$ (04)

c. Evaluate:
$$\oint_C \frac{z^4 + 1}{(z-1)^2} dz$$
 where *C* is the circle i) $|z| = \frac{1}{2}$ and ii) $|z| = 2$ (03)

OR

Page 1 of 3

Q-2 Attempt all questions

a. Solve: i)
$$(x^2 - y^2) dx = xy dy$$
 (04)

ii)
$$(D^3 + 3D^2 + 3D + 1)y = e^{-x}$$
 (03)

b. Find harmonic conjugate of $\log(x^2 + y^2)$. (04)

c. Evaluate:
$$\lim_{z \to 0} \frac{\sin z}{z}$$
 (03)

Q-3 Attempt all questions

(14)

(14)

(07)

(14)

a. Solve the differential equation $(D^2 + 2D + 1)y = e^{-x} \log x$ by the method of variation of parameter. (05)

b. Evaluate:
$$\iint_{C} \frac{z+1}{\sin z} dz$$
, where $C: |z| = \frac{3\pi}{2}$. (05)

c. Check whether the following functions are analytic or not. (04)
i)
$$f(z) = z^{\frac{5}{2}}$$
 ii) $f(z) = \overline{z} + z$

OR

Q-3 Attempt all questions

a. Solve: $(D^2 - 4D + 3)y = \sin 3x \cos 2x$. (04)

b. Is
$$w = \frac{1}{7}$$
 conformal at $1 + i$? (03)

c. Evaluate:
$$\iint_{C} \frac{z^3 + z^2 + 1}{z(z-1)} dz$$
, where $C: |z| = \frac{\pi}{2}$. (04)

d. Show that the map $T: P_2 \to R$ which is defined by $T(a+bx+cx^2) = a+b+c$ is (03) linear transformation.

SECTION - II

Q-4 Answer the Following questions:

a. Solve:
$$(D^3 + 3D)y = 0$$
 (02)

b. Prove that the system of three vectors (1,3,2), (1,-7,-8) & (2,1,-1) of $V_3(R)$ is (02) linearly dependent.

c. If *u* and *v* are orthogonal vectors in
$$M_{22}$$
 and $u = \begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix}$ then find *v*. (01)

d. What is the span of $\{1, t, 3t\}$? (01)

e. Solve:
$$y' - y = \frac{1}{e^x}$$
 (01)

Page 2 of 3

Q-5 Attempt all questions

		4	3	1	
a.	Find A^{-1} by using Cayley-Hamilton theorem, where $A =$	2	1	-2	. (05)
		1	2	1	

b.	Evaluate $\iint_C z^2 dz$, where C is the Square whose boundaries are $x = \pm a$ and $y = \pm a$.	(05)
c.	Solve: $2y'' + 8y = 6\tan(3t)$	(04)

OR

(04)

(14)

Q-5 Attempt all questions

(14)**a.** Solve the following system of linear equation: (05)x + y - z = 1, -x - y + 5z = -1, 3x + 5y + 7z = 2

b. Using Cauchy's integral formula, evaluate
$$\iint_C \frac{e^{2z}}{z^2 - 3z + 2} dz$$
, where C is $|z| = 3$. (05)

Find bilinear transformation which sends the points i, 0, 1 into -i, 1, -1 c. (04)respectively.

Q-6 Attempt all questions

- (14)
- Find eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$. (07)a.
- If $V = M_{22}$ then show that V is inner space, where $\langle A, B \rangle = tr(A^{t}B)$. (05)b.
- If V = Q and operations are usual then show that V is not a vector space over R. c. (02)

OR

(14)

- **Attempt all Questions Q-6** Using gram-Schmidt orthogonalization process find orthogonal basis from the a. (07) basis $B = \left\{ \begin{bmatrix} 1 & -2 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 3 & 0 \\ -1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix}, \begin{bmatrix} 3 & -1 \\ 0 & 2 \end{bmatrix} \right\}.$
 - b. Show that $\{(1,-1,2),(-1,2,2),(1,0,1)\}$ is basis of \mathbb{R}^3 . (03)

Which of the following are subspace? Justify with proper reason. c. (04) $\left(\left(\right) \right)$

1)
$$W_1 = \{(x, y) | x + y = e^x \}$$

2)
$$W_2 = \{(x, y, z) | x + y - z = 0\}$$

Page 3 of 3

